skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buehrer, R Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Radio telescopes are susceptible to interference arriving through its sidelobes. If a reflector antenna could be retrofitted with an adaptive null steering system, it could potentially mitigate this interference. The design of a reflectarray which can be used to reconfigure a radio telescope’s radiation pattern by driving a null to the angle of incoming interference is presented. The reflectarray occupies only a portion of the rim of the original reflector and lays conformal to the paraboloid within this region. The conformal reflectarray contains unit cells with 1-bit reconfigurability stemming from two symmetrically placed PIN diodes. It is found that the dielectric and switch losses introduced by the reflectarray do not significantly affect the radio telescopes efficiency since the reflectarray is placed only along the outer rim of the reflector which is weakly illuminated. Simulation results of an L-band reconfigurable reflectarray for an 18 m prime focus fed parabola are presented. 
    more » « less